
Shell Scripting Tutorial Page 1

Unix & Linux
Shell Scripting Tutorial

(c) 2000 – 2014 Steve Parker

A Bourne Shell Programming/Scripting Tutorial for learning about
using the Unix shell.

– Join in on Facebook, at http://facebook.com/shellscript

– Check out the *nixShell Blog at http://nixshell.wordpress.com/

– See this book's Kindle page at
http://amzn.com/dp/B00C2EGNSA

Steve Parker asserts his moral right to be identified by the author of this
book in accordance with the Copyright, Designs and Patents act of
1988. All rights reserved.

Version:1.2h

Page 2 Shell Scripting Tutorial

http://facebook.com/shellscript
http://amzn.com/dp/B00C2EGNSA
http://nixshell.wordpress.com/

Table of Contents
1. Introduction...5
2. Philosophy ..8
3. A First Script ..11
4. Variables - Part I ...14

Scope of Variables..16
5. Wildcards...20
6. Escape Characters ...21
7. Loops ..24

While Loops..26
8. Test ...30
9. Case ..37
10. Variables - Part II ...39
11. Variables - Part III ..43
12. External Programs ..45
13. Functions ..47

Scope of Variables..50
Recursion..52
Exit Codes...54

14. Hints and Tips ...56
CGI Scripting..56
Exit Codes ..57
Simple Expect Replacement ..61
Trap ..64
echo : -n vs \c ...66
Cheating..69
Telnet hint...71

15. Quick Reference ...75
16. Interactive Shell ..79
17. Exercises..81

Addressbook...81
Search..82
Add..82
Remove...82
Edit..82
Bonus Points...83

Shell Scripting Tutorial Page 3

Hints / Things to think about..83
Directory Traversal...83

Links To Other Resources...84
The 600-Page Book...85

Page 4 Shell Scripting Tutorial

1. Introduction

Purpose Of This Tutorial

This tutorial is written to help people understand some of the basics of
shell script programming, and hopefully to introduce some of the
possibilities of simple but powerful programming available under the
bourne shell. As such, it has been written as a basis for one-on-one or
group tutorials and exercises, and as a reference for subsequent use.

A Brief History of sh

Steve Bourne wrote the Bourne shell which appeared in the Seventh
Edition Bell Labs Research version of Unix. Many other shells have
been written; this particular tutorial concentrates on the Bourne and the
Bourne Again shells. Other shells include the Korn Shell (ksh), the C
Shell (csh), and variations such as tcsh. This tutorial does not cover
those shells. Maybe a future version will cover ksh; I do not intend to
write a tutorial for csh, as csh programming is considered harmful1.

Audience

This tutorial assumes some prior experience; namely:

• Use of an interactive Unix shell
• Minimal programming knowledge - use of variables, functions,

1 See http://www.faqs.org/faqs/unix-faq/shell/csh-whynot/

Shell Scripting Tutorial Page 5

http://www.faqs.org/faqs/unix-faq/shell/csh-whynot/

is useful background knowledge
• Understanding of how Unix commands are structured, and

competence in using some of the more common ones.
• Programmers of perl, python, C, Pascal, or any programming

language (even BASIC) who can maybe read shell scripts, but
don't feel they understand exactly how they work.

Typographical Conventions Used in This Tutorial

Significant words will be written in italics when mentioned for the first
time. Code segments and script output will be displayed as
monospaced text. Command-line entries will be preceded by the Dollar
sign ($). If your prompt is different, enter the command:

PS1="$ " ; export PS1

Then your interactions should match the examples given (such as $
./my-script.sh below). Script output (such as "Hello World" below) is
displayed at the start of the line.

Text that is to be entered by you, is shown in bold text.

$ echo '#!/bin/sh' > my-script.sh
$ echo 'echo Hello World' >> my-script.sh
$ chmod 755 my-script.sh
$./my-script.sh
Hello World
$

Entire scripts will be surrounded by thick horizontal rules and include a
reference where available to where the plain text of the script may be
downloaded (from http://steve-parker.org/sh/eg):

Page 6 Shell Scripting Tutorial

http://steve-parker.org/sh/eg

first.sh2

#!/bin/sh
This is a comment!
echo Hello World # This is a comment, too!

Note that to make a file executable, you must set the eXecutable bit,
and for a shell script, the Readable bit must also be set:

$ chmod a+rx first.sh

$./first.sh

2 http://steve-parker.org/sh/eg/first.sh.txt

Shell Scripting Tutorial Page 7

http://steve-parker.org/sh/eg/first.sh.txt

2. Philosophy
Shell script programming has a bit of a bad press amongst some Unix
systems administrators. This is normally because of one of two things:

• The speed at which an interpreted program will run as compared
to a C program, or even an interpreted Perl program.

• Since it is easy to write a simple batch-job type shell script,
there are a lot of poor quality shell scripts around.

It is partly due to this that there is a certain machismo associated with
creating good shell scripts. Scripts which can be used as CGI programs,
for example, without losing out too much in speed to Perl (though both
would lose to C, in many cases, were speed the only criterion).
There are a number of factors which can go into good, clean, quick,
shell scripts.

• The most important criteria must be a clear, readable layout.
• Second is avoiding unnecessary commands.

A clear layout makes the difference between a shell script appearing as
"black magic" and one which is easily maintained and understood.
You may be forgiven for thinking that with a simple script, this is not
too significant a problem, but two things here are worth bearing in
mind.

1. First, a simple script will, more often than anticipated, grow into
a large, complex one.

2. Secondly, if nobody else can understand how it works, you will
be lumbered with maintaining it yourself for the rest of your

Page 8 Shell Scripting Tutorial

life!

Something about shell scripts seems to make them particularly likely to
be badly indented, and since the main control structures are if/then/else
and loops, indentation is critical for understanding what a script does.

One of the major weaknesses in many shell scripts is lines such as:

cat /tmp/myfile | grep "mystring"

which would run much faster as:

grep "mystring" /tmp/myfile

Not much, you may consider; the OS has to load up the /bin/grep
executable, which is a reasonably small 75600 bytes on my system,
open a pipe in memory for the transfer, load and run the /bin/cat
executable, which is an even smaller 9528 bytes on my system, attach it
to the input of the pipe, and let it run.

Of course, this kind of thing is what the OS is there for, and it's
normally pretty efficient at doing it. But if this command were in a loop
being run many times over, the saving of not locating and loading the
cat executable, setting up and releasing the pipe, can make some
difference, especially in, say, a CGI environment where there are
enough other factors to slow things down without the script itself being
too much of a hurdle. Some Unices are more efficient than others at
what they call "building up and tearing down processes" – i.e., loading
them up, executing them, and clearing them away again. But however
good your flavour of Unix is at doing this, it'd rather not have to do it at
all.

As a result of this, you may hear mention of the Useless Use of Cat
Award (UUoC), also known in some circles as The Award For The
Most Gratuitous Use Of The Word Cat In A Serious Shell Script
being bandied about on the comp.unix.shell newsgroup from time to
time. This is purely a way of peers keeping each other in check, and
making sure that things are done right.

Shell Scripting Tutorial Page 9

Which leads me nicely on to something else: Don't ever feel too close
to your own shell scripts; by their nature, the source cannot be closed. If
you supply a customer with a shell script, s/he can inspect it quite
easily. So you might as well accept that it will be inspected by anyone
you pass it to; use this to your advantage with the GPL3 - encourage
people to give you feedback and bugfixes for free!

3 http://www.gnu.org/copyleft/gpl.html

Page 10 Shell Scripting Tutorial

http://www.gnu.org/copyleft/gpl.html

3. A First Script
For our first shell script, we'll just write a script which says "Hello
World". We will then try to get more out of a Hello World program
than any other tutorial you've ever read :-)
Create a file (first.sh) as follows:

first.sh4

#!/bin/sh
This is a comment!
echo Hello World # This is a comment, too!

The first line tells Unix that the file is to be executed by /bin/sh. This
is the standard location of the Bourne shell on just about every Unix
system. If you're using GNU/Linux, /bin/sh is normally a symbolic
link to bash (or, more recently, dash).

The second line begins with a special symbol: #. This marks the line as
a comment, and it is ignored completely by the shell. The only
exception is when the very first line of the file starts with #! - as ours
does. This is a special directive which Unix treats specially. It means
that even if you are using csh, ksh, or anything else as your interactive
shell, that what follows should be interpreted by the Bourne shell.
Similarly, a Perl script may start with the line #!/usr/bin/perl to tell
your interactive shell that the program which follows should be
executed by Perl. For Bourne shell programming, we shall stick to

4 http://steve-parker.org/sh/eg/first.sh.txt

Shell Scripting Tutorial Page 11

http://steve-parker.org/sh/eg/first.sh.txt

#!/bin/sh.

The third line runs a command: echo, with two parameters, or
arguments - the first is "Hello"; the second is "World".
Note that echo will automatically put a single space between its
parameters.
The # symbol still marks a comment; the # and anything following it is
ignored by the shell.

now run chmod 755 first.sh to make the text file executable, and run
./first.sh.
Your screen should then look like this:

$ chmod 755 first.sh
$./first.sh
Hello World
$

You will probably have expected that! You could even just run:

$ echo Hello World
Hello World
$

Now let's make a few changes.
First, note that echo puts ONE space between its parameters. Put a few
spaces between "Hello" and "World". What do you expect the output to
be? What about putting a TAB character between them?
As always with shell programming, try it and see.
The output is exactly the same! We are calling the echo program with
two arguments; it doesn't care any more than cp does about the gaps in
between them. Now modify the code again:

#!/bin/sh
This is a comment!
echo "Hello World" # This is a comment, too!

This time it works. You probably expected that, too, if you have
experience of other programming languages. But the key to
understanding what is going on with more complex command and shell

Page 12 Shell Scripting Tutorial

script, is to understand and be able to explain: Why?
echo has now been called with just one argument - the string
"Hello World". It prints this out exactly.
The point to understand here is that the shell parses the arguments
before passing them on to the program being called. In this case, it
strips the quotes but passes the string as one argument.
As a final example, type in the following script. Try to predict the
outcome before you run it:

first2.sh5

#!/bin/sh
This is a comment!
echo "Hello World" # This is a comment, too!
echo "Hello World"
echo "Hello * World"
echo Hello * World
echo Hello World
echo "Hello" World
echo Hello " " World
echo "Hello \"*\" World"
echo `hello` world
echo 'hello' world

Is everything as you expected? If not, don't worry! These are just some
of the things we will be covering in this tutorial ... and yes, we will be
using more powerful commands than echo!

5 http://steve-parker.org/sh/eg/first2.sh.txt

Shell Scripting Tutorial Page 13

http://steve-parker.org/sh/eg/first2.sh.txt

4. Variables - Part I
Just about every programming language in existence has the concept of
variables - a symbolic name for a chunk of memory to which we can
assign values, read and manipulate its contents. The Bourne shell is no
exception, and this section introduces that idea. This is taken further in
Variables - Part II which looks into variables which are set for us by the
environment.
Let's look back at our first Hello World example. This could be done
using variables (though it's such a simple example that it doesn't really
warrant it!)
Note that there must be no spaces around the "=" sign: VAR=value
works; VAR = value doesn't work. In the first case, the shell sees the
"=" symbol and treats the command as a variable assignment. In the
second case, the shell assumes that VAR must be the name of a
command and tries to execute it.
If you think about it, this makes sense - how else could you tell it to run
the command VAR with its first argument being "=" and its second
argument being "value"?
Enter the following code into var1.sh:

var.sh6

#!/bin/sh
MY_MESSAGE="Hello World"
echo $MY_MESSAGE

6 http://steve-parker.org/sh/eg/var.sh.txt

Page 14 Shell Scripting Tutorial

http://steve-parker.org/sh/eg/var.sh.txt

This assigns the string "Hello World" to the variable MY_MESSAGE then
echoes out the value of the variable.
Note that we need the quotes around the string Hello World. Whereas
we could get away with echo Hello World because echo will take any
number of parameters, a variable can only hold one value, so a string
with spaces must be quoted to that the shell knows to treat it all as one.
Otherwise, the shell will try to execute the command World after
assigning MY_MESSAGE=Hello.

The shell does not care about types of variables; they may store strings,
integers, real numbers - anything you like.
People used to Perl may be quite happy with this; if you've grown up
with C, Pascal, or worse yet Ada, this may seem quite strange.
In truth, these are all stored as strings, but routines which expect a
number can treat them as such.
If you assign a string to a variable then try to add 1 to it, you will not
get away with it:

$ x="hello"
$ expr $x + 1
expr: non-numeric argument
$

This is because the external program expr only expects numbers. But
there is no syntactic difference between:

MY_MESSAGE="Hello World"
MY_SHORT_MESSAGE=hi
MY_NUMBER=1
MY_PI=3.142
MY_OTHER_PI="3.142"
MY_MIXED=123abc

Note though that special characters must be properly escaped to avoid
interpretation by the shell.
This is discussed further in Chapter 6, “Escape Characters”.

We can interactively set variable names using the read command; the
following script asks you for your name then greets you personally:

Shell Scripting Tutorial Page 15

var2.sh

#!/bin/sh
echo What is your name?
read MY_NAME
echo "Hello $MY_NAME - hope you're well."

Mario Bacinsky kindly pointed out to me that I had originally missed
out the double-quotes in line 3, which meant that the single-quote in the
word "you're" was unmatched, causing an error. It is this kind of thing
which can drive a shell programmer crazy, so watch out for them!

This is using the shell-builtin command read which reads a line from
standard input into the variable supplied.
Note that even if you give it your full name and don't use double quotes
around the echo command, it still outputs correctly. How is this done?
With the MY_MESSAGE variable earlier we had to put double quotes
around it to set it.
What happens, is that the read command automatically places quotes
around its input, so that spaces are treated correctly. (You will need to
quote the output, of course - e.g. echo "$MY_MESSAGE").

Scope of Variables

Variables in the Bourne shell do not have to be declared, as they do in
languages like C. But if you try to read an undeclared variable, the
result is the empty string. You get no warnings or errors. This can cause
some subtle bugs - if you assign
 MY_OBFUSCATED_VARIABLE=Hello
and then
 echo $MY_OSFUCATED_VARIABLE
Then you will get nothing (as the second OBFUSCATED is mis-spelled).

There is a command called export which has a fundamental effect on
the scope of variables. In order to really know what's going on with
your variables, you will need to understand something about how this is
used.

Page 16 Shell Scripting Tutorial

http://steve-parker.org/sh/eg/var2.sh.txt

Create a small shell script, myvar2.sh:

myvar2.sh7

#!/bin/sh
echo "MYVAR is: $MYVAR"
MYVAR="hi there"
echo "MYVAR is: $MYVAR"

Now run the script:

$./myvar2.sh
MYVAR is:
MYVAR is: hi there

MYVAR hasn't been set to any value, so it's blank. Then we give it a
value, and it has the expected result.
Now run:

$ MYVAR=hello
$./myvar2.sh
MYVAR is:
MYVAR is: hi there

It's still not been set! What's going on?!
When you call myvar2.sh from your interactive shell, a new shell is
spawned to run the script. This is partly because of the #!/bin/sh line
at the start of the script, which we discussed earlier.
We need to export the variable for it to be inherited by another
program - including a shell script. Type:

$ export MYVAR
$./myvar2.sh
MYVAR is: hello
MYVAR is: hi there

7 http://steve-parker.org/sh/eg/myvar2.sh.txt

Shell Scripting Tutorial Page 17

http://steve-parker.org/sh/eg/myvar2.sh.txt

Now look at line 3 of the script: this is changing the value of MYVAR.
But there is no way that this will be passed back to your interactive
shell. Try reading the value of MYVAR:

$ echo $MYVAR
hello
$

Once the shell script exits, its environment is destroyed. But MYVAR
keeps its value of hello within your interactive shell.
In order to receive environment changes back from the script, we must
source the script - this effectively runs the script within our own
interactive shell, instead of spawning another shell to run it.
We can source a script via the "." (dot) command:

$ MYVAR=hello
$ echo $MYVAR
hello
$. ./myvar2.sh
MYVAR is: hello
MYVAR is: hi there
$ echo $MYVAR
hi there

The change has now made it out into our shell again! This is how your
.profile or .bash_profile file works, for example.
Note that in this case, we don't need to export MYVAR.
Thanks to sway for pointing out that I'd originally said echo MYVAR
above, not echo $MYVAR as it should be. Another example of an easy
mistake to make with shell scripts. One other thing worth mentioning at
this point about variables, is to consider the following shell script:

#!/bin/sh
echo "What is your name?"
read USER_NAME
echo "Hello $USER_NAME"
echo "I will create you a file called $USER_NAME_file"
touch $USER_NAME_file

Page 18 Shell Scripting Tutorial

Think about what result you would expect. For example, if you enter
"steve" as your USER_NAME, should the script create steve_file?
Actually, no. This will cause an error unless there is a variable called
USER_NAME_file. The shell does not know where the variable ends and
the rest starts. How can we define this?
The answer is, that we enclose the variable itself in curly brackets:

user.sh8

#!/bin/sh
echo "What is your name?"
read USER_NAME
echo "Hello $USER_NAME"
echo "I will create you a file called ${USER_NAME}_file"
touch "${USER_NAME}_file"

The shell now knows that we are referring to the variable USER_NAME
and that we want it suffixed with “_file”. This can be the downfall of
many a new shell script programmer, as the source of the problem can
be difficult to track down.

Also note the quotes around "${USER_NAME}_file" - if the user
entered "Steve Parker" (note the space) then without the quotes, the
arguments passed to touch would be Steve and Parker_file - that is,
we'd effectively be saying touch Steve Parker_file, which is two
files to be touched, not one. The quotes avoid this.

8 http://steve-parker.org/sh/eg/user.sh.txt

Shell Scripting Tutorial Page 19

http://steve-parker.org/sh/eg/user.sh.txt

That's all for the sample

of the tutorial.

Please visit

http://steve-
parker.org/sh/sh.shtml

for the full PDF document
(also available on Kindle

and Paperback), and

for the full online tutorial.

Page 20 Shell Scripting Tutorial

http://steve-parker.org/sh/sh.shtml
http://steve-parker.org/sh/sh.shtml

Links To Other Resources
These are just a few of many other useful resources which can be found
on the internet:

Steve Bourne's Introduction to the Unix Shell.
http://steve-parker.org/sh/bourne.shtml

A pretty definitive document on quoting and escape characters
http://www.mpi-inf.mpg.de/departments/rg1/teaching/unixffb-
ss98/quoting-guide.html

What to watch out for when writing portable shell scripts.
http://archive09.linux.com/articles/34658

The Rosetta Stone for Unix :
http://bhami.com/rosetta.html

Shell Scripting Tutorial Page 21

http://bhami.com/rosetta.html
http://archive09.linux.com/articles/34658
http://www.mpi-inf.mpg.de/departments/rg1/teaching/unixffb-ss98/quoting-guide.html
http://www.mpi-inf.mpg.de/departments/rg1/teaching/unixffb-ss98/quoting-guide.html
http://steve-parker.org/sh/bourne.shtml

The 600-Page Book
Steve Parker, the author of this tutorial, has also written a full book;
Published by Wrox, the book "Shell Scripting: Expert Recipes for
Linux, Bash and more" is available from all good retailers. ISBN
1118024486. RRP $49.99. Also available on Kindle:

http://steve-parker.org/book/ has the details; the book is available to
buy online and in stores.

Steve Parker has also written “How to Build a LAMP Server”, which
details the installation of the LAMP stack, and building a working
application on top of it, including MySQL configuration, phpMyAdmin
use, and PHP development. This is currently only available on Amazon
as an e-Book; search for “B00DAI6ATO”, or for “How to Build a
LAMP Server”.

See http://steve-parker.org/publications/ for the latest information.

Page 22 Shell Scripting Tutorial

http://steve-parker.org/publications/
http://steve-parker.org/book/

	Scope of Variables

